AD=A103 074 KANSAS STATE UNIV MANHATTAN DEPY OF COMPUTER SCIENCE F/6 972
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME=+EYC(U)
OCT 76 F J MARYANSKI+ V WALLENTINE DAAG29=76-G~0108
CcS=T6=14 NL

UNCLASSIF IED

AIRMICS Army Institute tor Research in 313 Calculator Bidg.
Management Information and GA Institute of Technology
Computer Science Atlanta, GA 30332
<H Technical Report
g " RESEARCH IN FUNCTIONALLY
- DISTRIBUTED COMPUTER
- H -
Y - SYSTEMS DEVELOPMENT
> =
< . .
Kansas State University
. | j
; Virgil; Wallentine e T
- Principal Investigator £ :
S YRRV LY .
A
Approved for public release; distribution unlimited
VOLLME IX
. MEMORY IN A
> D1sTRIBUTED DATA Base EMENT SYSTEM .
> .
3.
N
) Y es
E—E U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060
‘ 1 g 'Cs ‘3 ?_)/ Ly i1 \/ .-‘;.»

- UNCLASSIFIED

SECJI.UY" CLASSIFICATION OF THIS PAGE (When Date Fritered)

18. SUPPLEMENTARY NOTES

documents.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorizea

19. KEY WORDS (Continue on fQ‘vF'.’t‘l,:-;HiO tf necessary and tdentify by block number)
DDBMS

Distributed Processiag

Back-cend Computer

20 ABSTRACT (Continue on reverse side if necessary and identtty by dlock number)

—-0OVver -

DD \ ’J\,,.':M., 1473 EOITION OF 1 NNV 6515 0ODS0LETT

SECURITY CLAMIFICATION OF Tri1s PAGE (W ew Datm t1te o

Unclassified

-~ READ INSTREC FINNS !
REPORT DOCUMENTATION PAGE BEFORE COMPLETIN G FOR™M)
1. RUPORT NUMBER 12. GOVT ACCESSION NOJ 3 RECIPIENT'S CATALTL NUMBER 3
D-Alc3loNYS
o TITLE fend Sobtitle) T 5. TYPE OF REPORT & PLRICD COVE I B
MEMORY MANAGEMENT IN A DISTRIBUTED DATA Iterim
SE - T SYSTEM.
BASE “ANA("EMENI SYSTEM 6. PERFORMING ORG. REPORT NUMSER
CS 76-14 v
7 AUTHOR(S) 8 CONTRACT OR GRANT NUMBER(s)
Fred Maryanski
Y DAAG 29-76-G-0108
. DDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
9. PERFORMING ORGANlZATl?N NAMF.' AND A AREA & WORK UNIT NUMBE RS
Kansas State University
Department of Computer Science
Manhattan, KS 66506
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
US Army Research Oftice October 1976
P O Box 12211 13, NUMBER OF PAGES
Research Triangle Park, NC 27700 48 pages
4. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Otfico) 1S. SECURITY CLASS, (of thia report)
US Army Computer Systems Command e
Attn: éSCS—AT Y Unclassified
i i 2 V5. DECLASSIFICATION DOWNGRAOING
Ft. Belvoir, VA 22060 DECEASSE
16. DISTRIBUTICON STATEMENT (of this Repoart)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, {{ dillerent from Report) :
‘
i
’
!
4

A

UNCLASS LI LED i
SECURITY CLASSIFICATION OF THIS PAGE(When Data Lntored)

N

-ABSTRACT-

A memory management scheme which incorporates an
additional level of memory into the tradirional
primary-secondary storage hierarchy is proposed for
utilization in distributed data base management systems. In
this scheme, the memory of the back-end processor is us=d as
an additional memory buffer. An optimal three-level memory
management algorithm is presented along with an analysis of
its cost in terms of ©page replacement. The expected
per formance improvement over the optimal algorithm for a
two-level memory system is determined. Tne performance
benefits of the three-level memory management are applicable
to most distributed processing systems.

UNCLASSTITED

SECURITY CLASSIFICATION QF THIS PAGLMTinn [-acs batered)

s

Memory Management in Distributed

Data Base Systenms*
Technical Report CS 76-14

by

Fred J. Maryanski
N Computer Science Department
5 Kansas State University
Manhattan, Kansas 66506

45,

October 1976
ﬂ‘ * The work reported herein is supported by the United
- States Army Rescarch Office, Grant No. DAAG 29-76-G
-0108.

ABSTRACT
A memory management scheme which incorporates an additional
level of menory into the traditional primary-secondary storage
hierarchy is proposed for utilization in distributed data base
managenent systems. In this scheme, the memory of the back-end
processor is used as an additional memory buffer. An optimal
three-level memory management algorithm is presented along with an
analysis of its cost in terms of page replacement. The expected
performance improvement over the optimal algorithm for a two-
level memory system is determined. The performance benefits of
the three-level memory management are applicable to most distributed

processing systems.,

.

b

~

1. INTRODUCTION

The prirmarv poal of data base management systems is to
provide rapid and sccure processing of large amountsof data. Through
the use of a data basce manapenment system (DBMS) data can become
casily available to a large class of people ranging from the data
basc administrator who has specified the logical and physical
structure of the data base to the clerk who enters requests on
a keyboard. Data basc systems have evolved to the point that
progranms can be written to perform virtually any type of operation
on a data base. There are a large number of commercially avail-
able general data base systems [1].

A common characteristic of present day state of the industry
systems is that the data base is under the control of a single
computer. The ability to operate on data controlled by several
distinct computer systems is the next logical step in the evolution
of data hases. A svsten in which the data bases controlled by
physically separated processors are accessible to all processors
is known as a distributed data base management system,

The idea of a DBEMS operating in a multi-computer environment
has been discussed by several authors [2-7]). Canadav, et al, [5]
developed a prototype backend DRMS. A back-end DBMS is a two pro-
cesser conficuration in which one machine (the host) executes
application DBMS provrans and the second machine (the backend)
performs the actual duta bhase operations upon request from the host.

In a bark-cnd DBMS, control of the data base resides in the back-

end processor.,

The feasibility of a back-end DEMS in a data processing
environment has been investipated in a study reported in Reference
[9). The results of the study indicate that a back-end DBMS f{rees
host CPU and memory resources, introduces concurrency into the sys-
tem, and provides an economical means of incrcasing system capacity.

This paper proposes a threc-level memory management scheme
for distributed data base systems. This scheme which employs
the back-end memory as an additional buffer between the application
program and secondary storage is analyzed in terms of cost of page
replacement. The projected performance inprovement using the

three-level technique is then presented.

2. DISTRIBUTLD DBMS FUNCTIONAL CHARACTERISTICS

Essentially a distributed DBMS is a data management facility
which resides on a computer network each of whose nodes has three
capabilities with respect to data management. Three functions of
a processor node in a DDBMS network are listed below.

1. User interface. Serve as job initiation point and input/
output facility.

2. Application program execution. The data base application
progranm resides in the memory of and is executed by this
processor.

3. Data base access. Fach node controls the access to the
data base residing on the sceondary storape devices con~
nected to the processor.

In a DDBMS any application program mav be submitted to one

processor, executed on another, and have access to data bases on
any other nodes iu the network. An important feature of a distri-

buted DIMS is that the processor used to execute the progranm and the

e e — e

physical loration of the data may be totally transparcent to the user.
The application progran may rveference any data item to which it has
legal access by o logical name, the mapping to the phycical location
in the network is carried out by the NDBMS,

A typical distributed DBMS topology is depicted in Figure 1.
The frent-end processers are used exclusively for user interface; the
host machines are dedicated to application program execution and a
back-end computer's sole function is data base access. In the general
case, any machine in the distributed DBMS may be assigned any combination
of the three data base functions. The only restvictions are that a

front-cnd machine be interfaced to one or more terminals; a host must

have sufficient memory to execute the application program and a

multi-progranmed operating system, (approximate minimum-32Kb); the back-end

capabilities and be directly tied to the secondary storage devices contain-
ing the data base, and have sufrficient pricary merory to support the DBMS
function (at least 64XD),

3, MEMOSY O VANAGENMENT

Except when the processors in the distributed DBMS network
are phvsically proximate with ultra high speed links, intermachine
tranemiscaicn time becomes a limiting performance factor. Therefore the

frequency of large scale data transmissions between machines must be

minimired., In the situation of very high speed interpachine connection,

disk accens time hecomes an important consideration. Here limiting the

frequeney of duta transtfers from disk to memory increascs system perfor-

ang e,

e ——
i e i i

——

Since the distributed DEMS concept supports any type of machine
connection, a generalized memory manapenent scheme is necessary to nminiwize
data transfers. Three levels of memoryv are available to each application
propran, host, back-end, and secondary. The host and back-end memories
each contain raps of the pages currently residing within their memorics.

When a page is removed from the host memory, a test must be
made to determine if it has becn modified since being retrieved from
the back-end. If not, it is merely overwritten and no transmission
to the back-end takes place. If the page to be replaced has been
updated, it is returned & the back-end machine with a flag set to
indicate that it has been modified. The back-end computer does
not return this page immediately to secondary memory, but rather retains
it in its primary memory. Thus the back-end retains pages that have
been previously usvd by the aép]icution program. Such pages have a
higher probability of beinp accessed than previously unaccessed pages,
due to the principle of locality [10,11), This scheme is, in effect,

G TaTCUTLVOL POLC TopLaeenent a

corithm, If a page is returned to the

—
T
-

back-cnd twemory, the origingl copv if overwritten. VWhen a back-end
pape is te be replaced, again ite write flag is checked and it is written
back to the disk onlv if it has been modified.

This memory management scheme presures a single back-end machine
per physical device. That is, all access to the device must pass through
that back-end machine. This eliminates contention problems for that
device. Since the back-end by definiticn is an I/0 oriented processor,
any bottle necks in the system would be the result of poor data set

distribution on secondary storage devices, This problem can be detected

and alleviated by proper use of data base utilities which provide usage
statistics and those which restructure the data base.

The following simple example illustrates the benefits of a

three-level memory management system.

Example 1

Assume a distributed DBMS configuration of three hosts, Hl,

H2, H3 and a back-end, B, which controls access to record, R. Hl and

HZ may both read and write R while H3 hag only read privileges.

Assume the folleowing scquence of actions occurs:

Read R by Hl

Write R from Hl

Read R by Hz

Write R from H2
Read R by H3

Read R by “1
Terminate

If a standard two-level memory management approach were taken (i.e. no

buffering in the back-end), the set of data transfers involving R shown

in the first column would result. The second column indicates the

transfers in a three-level managencnt scheme under optimal conditions.

Operation 2-leveld 3-level

1. Read R Ly H] disk to B, B to ”1 disk to B, B to H
2. Write R from HJ "1 to B, B to disk Hl to B

3. Read R by H2 disk to B, B to ”2 B to H2

4. VWrite R fron ”2 N2 to B, B to disk H2 to B

5. Read K iy H3 disk to B, B to H3 B to “3

6. Read R oy Hl disk to B, B to “l B to Hl

7. Terninate B to disk

1

In this exanple, bLoth technigues required one transfer between the
back-end and a host for cach operation., The 2~Level approach also requires
one disk transfor per operotion while the 3-Level method resulted in a total
of two dist troowfors. The assunption was made that no back-end page fault forced
R te be written oute the dota base during the sequence of cperations. In
general, the performance of the mesory management scheme is directiy related
to the nunlbwer ot poye taults in the back-end.

™ the opticel case, assuning the two-level schewe required K disk
trancfers, no hack-end page faults will occur and a total of K-2 disk
transfers will be saved. (K-1 transfers if no writing takes place).
The weorst case bhehavior of the three-level menory scheme is identical
to the two-level arrangement. In this situation, a page fault occurs
before the next request for a given page 1s made. This completely
elicinites the buffering efiect of the back-end memory. Eq. Q) gives
the redustion in scceondary storage transfers for a page in the three-
leve! mansgesent cuvironnent as opposed to a two-level scheme.
¢V
where
K is the number of secondary storage transfers for a given
page in the two=level schene;
pfw is the number of times a back-end page fault replaces p
when the write flay of p is sot;
pfr is the nunber of times a back-end page fault replaces
p when write flag of p is not set; and
W is U if upon closing of the file centaining p, the write

100 fa cet. Ctharwise W ois 0,

o

- e .
ettt s nttiomsccn ISR S I W TP SR ¥ SR
A b doobda P |

—— ..

7
The reason for the factor of 2 being associated with pfw is
that replacenent of p with the write flag set results in two operations
writing p and then reading it back in for the next access. If the
write flag is not set, p is not written back to secondary storage. The
next access of poreqaices only that p be rercad. Therefore, pfr is
Ls, multiplicd by a factor of 1 in eq.(1).
From ¢q. (1) it can be seen that the two factors dominating per-
. forronce of the three-level memory management policy are the number of
2
%, page faults and the frequency of write operations.
3 4, PAGE REPLACEMRENT ALCORITHEM
"-
©
o AS indicat=d previously the page replacement algorithm on
-
‘N the back-end machine is a critical performance factor. Therefore, a
9 theoretically optinal algorithn is presented. The following discussion -

is similar to that found in Ru}wrcncc [12]. The principle difference
; is in tﬁo cost functions,
ii As in Refereace [12] we will assume a Oth order stationary
program. This means that p(x), the probability of page x being
refcrcacad is independent of previous references and remains fixed
K througzhout the progran,

Pofinicien 1T (Terninolony)
. Let N - (i,...n) be the pages of a given program and M =(1,

k .
oot be papes of back-cnd memory. Ascume that 1 < m < n. N compriscs

all sirings of length & over N, k= 0, Reference string v = rl...rk
’ K
€n . P(x,t) is the probability that page x will be referenced at tine t.
. r, feiplics that a time t, the program references page x. —_

€ ¢ N is a memory state.

IXI denotes the number of e¢lements in set X.
wy is the write flag of page y.
Pefinition 2
The allocation map, B of paging algorithm A is ga(S,x) = S
vhere §, S§' are memory states.
x is a rcforcnced page.
Pefinition 3
A is a dermand naging algorithm if the allocation map of A

is defined as follows:

Sa(syx)A"rS xe S
S+x x4S, |S|<m
S=x-y xéS,]S]im, yeS

Definizion 4

The cost ¢f algorithm A with memory state S and reference

string v is

C(A,S,v) =

Wt~ 3

h(yt) where Ye is the page replaced.

t 1

The expected cost of algorithn A with memory state S over all

refereace strings of iength K ois

CAS) = I pWCAS,Y),

chk

Definitien 5

The coct of replacing g page, vy, on the back-end machine is

h(y) =[2 if{ W

y
) if W .
y
i e T T
. Y 2 [il -

It is this cost function that differs from the work in Reference [10].
Aho, Denning, and Ullaan did not consider the cost of removing a page in
their analysis. Duc to the operation of the three-level memory management
sclhene, it is necessary to include the cost of page removal. Thus, the
replacement cost is two disk operations (one cach for replacement and removal)

if the write {Jlag is set.

Definition 6

The minirmun achicvable expected cost for processing k references beyond

time t is Ck(S,t) which is defined recursively as

C (S,t) =V
o
<
Ck(S,t) = Aﬁz:ﬁp(x,t+l) * Ck—l(s’t+1)’ X€S
x¢cN .
h(yt)+ win Ck_l(5+x-y), xS . _
. ~ yeS '
Ck(S,l) is the nininun demand paging cost of processing T oo S
Definition 7
Let < be a ranking relation on N such that if x<y then
h(x)p(x) < h(v)p(y).
s = min § implies that for sc$, s<x, ¥xe S,
Lemma 1 (Aho, Deaning, and Ullman {12))
For t>0ana ¥S'CH, if x<y implies that Ck(S'+x,t) f_Ck(S'+y’t),
then s = minS Jmplies that
Ck(S—F,t) = min CP(S~z,t) ¥S TN, -

z:S

10
Proof
then
Ck(Sws.t):ACk(S—z,t) Vafs S.
Thus

C, {(§~:,1) = min Ck(S~a,t) ¥SON,

L
(8

Lemma 2
Suppose < is a stationary ranking of N.

Then

for x<y, h(¥)p(y) > C, (Sty,t) - Ck(S+x,t) > 0, x,yeS.

Proct

An intuitive proof is provided here. A formal proof can be obtained
by using the mechanism given in Reference [12) and substituting h(y)p(y)
in place of 1 as the upper bound.

Intuitively it can be seen that the only circumstances under which
Ck(S+y.t) - Ck(S+x,t) is nonzero is when eithar x or y must be replaced.
If x<y then x has a lower expected cost than y. Thus the difference
of the expected minimum costs is positive.

Lesma 3

The optimal back-end page replacement algorithm Ab has the map

(s,x) = S X ¢S
S+x-s x ¢ S

K

where s = min S,

Algorithnm Ab replaces the page with the lowest expected cost.

Proof -

By lLerzas 1 and 2, Al makes the minimal cost decisions as indicated
)

by Def, 7. Therefore Ab is a mininal expected cost algorithm.

Leioma 4

th Dy . .
If the 0 - order page reference probabilistics are stationary, the

expected cost per reference from state S is

n, 2 n.

C(8) = (B2 p (/B (4= p(i)p()
1°m 1=m

where B = ;3: p(i) .
i=m

Proof

Let ax(t)=p(x{5t) be the probability of a reference to x at time t
causing a page fault.
Let st=Nin St be the Jowest ranked page at time t.

Let SO be the initial memory state. The expected cost of k references

given initial state § is
o

€ (S.) = x5 hs)
Ck(So) = ;é% /:Ei p(x)ax(t—l) llﬁ;t) .
te \xtN
Under algorithn Ab,
ax(t)-<$) 1<x<n
(ii-p(x)/n mexn
then
-k S 20078 b
€. (s.) "o (B-(z5 P GY/B) b)
AR R WY -N-"-—i""——'—"-*'-—v—— o - - - —p—e

12
In gencral the cost of replacing pape s can be expressed as
) [

h{s Y = 1w
1v(. 1 l[&s]

t
Where

E[wS] is the expected value of the write flag of page g .
€ n

Ef] =" pdi) pe).
ht 1-m 1

For notationnl convenicnce let

F=8- (" g(i))/(n)

1=1in

then,

"

k
c (s)

- \
T FQLeE[Y
M) F1+E] Sty

K n
= - F{l+z »(i &
t=1 (1 f?m'(l) p(li>

n.
=kF (l+5£ p(i)p(\\’_))
i=m 1

The expected cost per reference is then

= F(l+ i;#‘ p(j)p(wi)

2 9 n
= (8~ 7 PGB Q=) p(v)

\

F

L
3

Lemma 4 indicates that the cost of the algoerithm Ab is dependent upon

the frequency of update operations on the lowest ranked pages. This result

differs from the expected cost for the optimal algorithm for 2-level

13

—
storage, Ao, [12,13), 1t should be noted from the definition of the page
ranking that in order for a page with its write flag set to be replaced :

'
its reference probability must be half that of the lowest page with a
cleared write flag.
Example 2
Let n=5, m=3 , N={(a,b,c,d,e)
Assume the following set of probability measures for the pages
p(a) = 3 p(db) =1 p(c) =3 p(d) =1 p(e) =1
8 4 16 8 16
Assune the following cost functions
h(a)=2 h(b)=1 h{(c)=1 h(d)=2 h(e)=1 .
Thus
~—
h(a)p(a)=3 h(b)p(d)=1 h(c)p(c)=_3 h(d)p(d)=1 h(e)p(e)=_1 .
. 4 i 16 4 1
The page arc thus ordered by <, as
la,b.d,c,e].
Assume the follwing reference string
v = abcedeabe
At t=0 . S=g
t=1 , S={a)
t=2 , S=la,b]
t=3 , S=la,b,c]
t=4 , S=[a,bh,d] , replace ¢, h(c) =
t=5 s S=f{a,b,e] , replace d, h(d) = 2
t=6 ’ S=[a,b,c]
t=7 , $={a,b,ec]
t=8 . S=[a,b,c] , replace e, h(e) =1 ~

Total cost of v is h(c)+h(d)+h(e)

4 .

. _)] i T . - e araan

14

5. PERFORMANCE I)TROQEMLNT

The page replacement algorithm Ab' is applicable to both host
an? hrcli-end processors in a distributed DBMS. The performance of
threc-Icvel menory system is dependent upon the type of connection
between the hoest and the back-end. If they are tightly-coupled as
we have thus far assumed, the back-end memory is essentially an exten-
sion of the host memory. However, in the case of a remote connection,
the transmission time b2tveen host and back-end machine could easily
surpass that of a digk nrcess., In a host back-end environment the
expected cost of renlacing a page is given by

C = Ch(sh) * T + Cb(sb) *D (2)
wvhere

Ch(Sh) is the expected cost of replacing a page in the host
in state Sh;
Cb(Sb) is the expected cost of replacing a page in the back-
end in statc Sb;

T and D are weighing factors for transmission and disk access
tines.

It is difficult to fairly compare performance of a distribute?
DBMS and a single machine system. If the host/back-end connection is
slover than shared primary memory then there exists a tradeoff of increased
access and communications overhead. If a shared memory linkage is assumed
(T=1 in ¢q.(2)) then the improvement in terms of expected cost of the
3-level management scheme over the 2-level management scheme can be
comnuted,

Let Mh ={1 ... mh} be the pages of host memory.

15

o P% ={1' ... mb'} be the peoges of back-end memory

and M = {milmi € Mh U{Mb-b%}}

1)

{1 ... m}, note that m> m

B p(1)

[}

Let R

and B, = § p(i)

k: h :"mh
Then the expected cost improvement of the three-level memory scheme over

the two-level scheme is

€= C, () - G(s)

Ci={B, - .? x>(1)/5) i + .? P(i)p(wi)
/
(1 + z p(i)p(W)

\ i .

Consider the system of the previous example, letting

i=nm

- B -):p(l)/B/
Exanple 3

mh=3, m=4 .

The expected cost for a host-only system is

el

5 2,. 5 . S .
>~ gﬁS)= £op@) - L p)/ fp@@) 1+ £ pD)pW,)
i=3 i=3 i=3 i=3
=/2-7 / 3 1

' (Es 178 §>(1+8>

' = 33 =0.258 .
. 128

4

"4

16

The expected cost for the distributed system is

q;S)

sisiasiany

Y opG) - 2R/ T a0 14 F p@pM)

i-4 i=4 i=4 i=4
=1 - S / 1
g 41O
= 3—3— = .094 .

The exgected iwprovement in performance is

W
W
w

= C (&) - C(5) =
q h b 13

o
w
N

= 21 = .164 ,
128

This indicat2s that for every six page references, the three-
level scheme is expected to haye one less disk reference,
6. FEASIBILITY OF ALGORITHM

The memory management algorithm presented here is theoreti-
cally optimal. Howcver, it is dependent upon a knowledge of a page
reference probability. 1In a data base environment, a record of all
operations 1s maintained on a journal file for backing and recovery
purposes. Page reference probabilities can be computed from the journal
file in a straight forward manner. The value of dynamically performing
such computations at run time is questionable. However, in a reasonably
stable enviroenment, such as the daily cyele of a data processing install-
ation, it should be feasible to periodically compute fairly accurate
page reference probabilities which could be used to drive the memory

managenent algorithm.

17

In a stable environment a page reference model describable
by a higher order Markov process could be synthesized. If such a model
were rvealized, an efficient pre-paging scheme [14) would bhecome feasible.
Any attempt at implermentation of such a model must be proceded by consid-

erable analytical study and careful simulation modeling.

7. CONCLUSION

The results presented in this report indicate that a three-
level memory management scheme will provide performance benefits in a
distributed data base management system. While the analysis given
here concentrated upon theoretically optimal algorithms for page
replaccement, the effect of the additional buffering in the back-end memory

would yield improvement for any algorithm., The three-level memory

managenent concept is applicable to any multi-computer configuration.

- oddm

AV

HOST

AN
\
F. E
1
FAY T
\{/J’_—‘ /
HOST HOST
1 .
- zﬁ 3\\\\\\ //?
\a N
B.E. B.E
1 2
N 7AY
— i}
(o
D.B. 1 D.B, 2
- Ficure 1

DistrisuTen DBIS with Front-Enp, Host, AnD Back-END PROCESSORS

g gt §- 5.

~ 8. REFLRINCES

1.

R

10.

11.

12.

14.

Conmunications of the ACM, Vol. 12, No. 10, Oct., 1974, pp. 575-532.

Workshop, May, 1974, pp. 445-462.

Fry, J.P. and Sibley, E.H., Fvolution of Data Base Management
Systems, Computing Survevs, Vol. 8, No. 1, Mar., 1976, pp. 7-42.

Aschim, F., Data Base Networks _ An Overview, Management
Informatics, Vol. 3, No. 1, Feb., 1974, pp. 12-28.

Booth, G.M., The Use of Distributed Data Bases in Information
Networks, }1er International Conference on Computer Communication:

Impacts dna Imp]1L1t10n§ Oct., 1972, pp. 371- 376.

Booth, G.M., Distributed Information Systems, National Computer
Conference, Vol. 45, June, 1976, pp. 789-794.

Canaday, R.H., et al, A Back-Fnd Computer for Data Base Management,

Everest, G.C., The Futures of Data Base Management, ACM SIGMOD

Maryanski, F.J., et al, A Minicomputer Based Distributed Data
Base System, \B& -IFEE_Trends and Applications Svmposium:
Micro and Mirni Q\Qtemg, FMy 976 pp. 113-117,

Whitrey, K.V.M., Fourth Generation Data Management Systems,
National Computer Conference, Vol. 42, June, 1973, pp. 239-244.

Maryanski, F.J., Fisher, P.S., and Wallentine, V.E., Evaluation
of Conversion to a Back-End Data Base Management System, ACM
Naticnal Conference, Oct., 1976,

Denning, P.J., Virtual Memory, Computing Survevs, Vol. 2, No. 3,
Sept., 1970, pp. 153-190.

Salaro, A., A Locality Model for File Structure Organization,
Confervace on Information Scicnces and Svstems, Mar., 1976, pp. 194-200.

Aho, AV., Denning, P.J., and Ullman, J.D., Principles of Optimal
Page Replacement, Journal of the ACM, Vol. 18, No. 1, Jan., 1971,
pp. 80-93. T o

L]
Gelenbe, E., A Unified Approach to the Evaluation of a Class of
Replacement Algorithms, JEEE Transactions on Computers, Vol. C-22,

No. 6, June, 1973, pp. 611-618.

Trivedi, K.S., Prepaging and Applications to Array Algorithos,
IELEE Tr1n<1cl10ns _on_Computers, Vol. C-25, No. 9, Sept., 1976,
Pp. 915-921.

